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Fig. 1: RECAP enables training VLAs with reward feedback and interventions. Our system starts with a pre-trained VLA that incorporates advantage

conditioning, allowing the model to learn effectively from real-world experience. For each task, we deploy the model and collect both autonomous rollouts and
online human corrections. We then fine-tune the value function on this online data, improving its estimates of how actions influence performance. Fine-tuning
and conditioning the VLA on these updated advantage estimates in turn improves policy behavior.

Abstract—We study how vision-language-action (VLA) models
can improve through real-world deployments via reinforcement
learning (RL). We present a general-purpose method, RL with
Experience and Corrections via Advantage-conditioned Policies
(RECAP), that provides for RL training of VLAs via advantage
conditioning. Our method incorporates heterogeneous data into
the self-improvement process, including demonstrations, data
from on-policy collection, and expert teleoperated interventions
provided during autonomous execution. RECAP starts by pre-
training a generalist VLA with offline RL, which we call π

∗

0.6,
that can then be specialized to attain high performance on
downstream tasks through on-robot data collection. We show
that the π

∗

0.6 model trained with the full RECAP method can
fold laundry in real homes, reliably assemble boxes, and make
espresso drinks using a professional espresso machine. On some
of the hardest tasks, RECAP more than doubles task throughput
and roughly halves the task failure rate.

I. INTRODUCTION

It’s amazing what you can learn if you’re not afraid to try.

Robert A. Heinlein, Have Space Suit–Will Travel

Practice makes perfect: while people are remarkably flexible

in acquiring new skills, mastery invariably requires learning

from repeated attempts. With general-purpose robotic founda-

tion models, such as vision-language-action (VLA) models,

we can flexibly specify tasks for generalist robots through

prompts. But just like people, these models will need to

practice a skill to achieve mastery. This means leveraging not

only on demonstration data, but also autonomously collected

experiential data that allows the policy to correct the mistakes

that it actually makes in deployment, improve speed and

robustness beyond the level of human teleoperation, and adapt

to new deployment conditions. The foundations of learning

through autonomous practice, as formalized with reinforce-

ment learning (RL) [1], have been known for decades, but

instantiating these principles in a general and scalable robotic

learning system presents significant challenges: designing

scalable and stable RL methods for large models, handling

heterogeneous data from different policies, and setting up RL

training with reward feedback in the real world, where reward

signals might be ambiguous or stochastic.

In this paper, we present RECAP, a method that enables

VLA models to incorporate reward feedback in all stages

of the training pipeline, from pre-training all the way to

training on data from autonomous execution. RECAP aims

to address this problem with a general-purpose recipe that

combines demonstrations, autonomous experience, and expert

interventions. Starting from the training recipe for a general-
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Fig. 2: Some of the tasks learned by RECAP. π∗

0.6
trained with RECAP can make espresso drinks, assemble cardboard boxes, and fold diverse and realistic

laundry with a high success rate. Each task involves realistic variability – flattened unfolded boxes stick together and bend, making espresso drinks requires
pouring liquids, and folding laundry requires generalization to a wide range of clothing items.

purpose VLA and training on diverse data from many different

robotic platforms, RECAP first pre-trains the VLA with offline

RL, followed by additional training on data collected through

deployments. During these deployments, the robot receives

(sparse) reward feedback based on the outcome of each trial,

and potentially additional expert interventions that correct

mistakes. The training process follows an offline RL [2, 3]

recipe: we train a value function that evaluates progress toward

successful task completion, and then use this value function

to estimate the advantage of each action in the dataset. By

conditioning the policy on an improvement indicator based on

this advantage [4], we can obtain an improved policy. Figure 1

provides a high-level overview of RECAP.

We can use RECAP to train policies for complex tasks,

such as folding diverse laundry, assembling boxes, or making

espresso drinks. We illustrate some of these tasks in Figure 2.

The method starts by pre-training the π∗
0.6 model with offline

RL on a diverse multi-task and multi-robot dataset. π∗
0.6 is

an adaptation of the π0.6 model for RL, and π0.6 is an

improvement on π0.5 [5], adding a larger backbone and more

diverse conditioning [6]. π∗
0.6 adds the ability to condition

on binarized advantage values, which makes it possible to

incorporate a value function to improve the policy. After pre-

training π∗
0.6 finetunes the π∗

0.6 model to a downstream task

with demonstrations, and then performs one or more iterations

of on-robot data collection to improve the model with RL.

Training π∗
0.6 with RECAP on autonomous experience more

than doubles the throughput on some of the hardest tasks,

and can decrease failure rates by 2× or more. This enables

π∗
0.6 to reach practically useful levels of robustness: we were

able to run it to make espresso drinks for 13 hours straight,

fold novel laundry items in a new home for over two hours

without interruptions, and assemble boxes that are used for

real packaging in a factory.

While RECAP is based on individual algorithmic compo-

nents that have been explored in prior works, the particular

combination of these components is novel, and the results

show, for the first time, that a general-purpose reinforcement

learning recipe with human reward feedback and interventions

can significantly improve both the robustness and throughput

of VLA models with experience collected through deployment.

II. RELATED WORK

Policies trained with imitation learning are known to suffer

from compounding errors [7] and, at best, can only be as

performant as the demonstration data. The goal of this work

is to improve the reliability and speed of vision-language-

action policies by going beyond imitation learning from offline

demonstrations. Prior works have used online interventions to

improve robotic manipulation policies [8–11]. We adopt a form

of such interventions, called human-gated DAgger [10, 12].

In contrast to these works, our method uses both expert

interventions and fully autonomous experience, resulting in

an RL-based framework that integrates multiple data sources.

There is a large body of work on using RL for autonomous

improvement of robotic manipulation policies [13–21], in-

cluding methods using diffusion-based policies [22–24], in

multi-task settings [25, 26], and using pre-trained multi-task

policies [27–29]. Unlike these works, we study how to scale

real-world RL to large VLA policies for long-horizon, fine-

grained manipulation tasks.

Many recent works have studied how to improve a base

VLA model through RL. Several works directly apply the

proximal policy optimization (PPO) algorithm and variations

thereof to VLA fine-tuning [30–34], yielding approaches that

are difficult to extend to real-world RL in an efficient and

scalable fashion. Another line of research has explored RL

fine-tuning on top of pre-trained VLA models, where RL

either trains a residual policy [35, 36], fine-tunes an action

head network [37], selects or refines actions proposed by the

VLA [38–40], or optimizes a policy acting in the noise space

of a diffusion-based VLA [41]. Some of these works have also

explored ways to distill the learned behavior back into the

VLA for end-to-end iterative improvement [35, 36, 38, 42].



These prior works generally use discrete actions or simple

Gaussian continuous action distributions. A critical distinction

is that we train an entire VLA end-to-end using (iterated)

offline RL, with an expressive flow matching VLA model.

This is made possible by a simple and scalable advantage-

conditioned policy extraction method, which removes much of

the complexity of using policy gradient style objectives with

large VLA models. In our comparisons, we show that this

significantly outperforms a more traditional policy gradient

based extraction scheme.

More closely related to RECAP in terms of methodology,

a number of prior works have integrated value functions

and end-to-end RL training of VLAs on real robots [43–

46]. For example, Huang et al. [43] apply calibrated Q-

learning to an offline demonstration dataset for grasping tasks,

without an online improvement phase. Zhang et al. [44] use

direct preference optimization (DPO) to optimize pick-and-

place skills from human preferences, using online rollouts

from a VLA. Finally, Zhai et al. [45], Ghasemipour et al.

[46] use PPO and REINFORCE respectively with time-to-

completion value functions to train VLAs for tasks like moving

a bowl, unfolding a mat, and pushing objects on a table.

In contrast to these prior works, we describe an iterated

offline RL framework for VLAs with multiple advantages.

First, our method supports high-capacity diffusion and flow-

based VLAs, unlike the discrete-action models studied in

prior works. Second, we avoid the need for on-policy PPO

or REINFORCE by using an advantage conditioning strategy

for policy extraction, which can utilize all prior (off-policy

or offline) data. Lastly, our evaluation consists of complex,

dexterous, and temporally extended tasks, where our method

increases throughput by about 2× while handling deformable

objects, liquids, and multi-stage tasks.

Prior works have explored the idea of conditioning the

policy on rewards, values, and advantages [47–56], including

methods that use classifier-free guidance [4]. We extend this

approach to pre-train and fine-tune a large-scale generalist

VLA policy [5], incorporating a variety of data sources (in-

cluding demonstrations, interventions, and autonomous policy

roll-outs) to learn real robotic manipulation tasks. Recent

research has also studied how to effectively train multi-

task, language-conditioned reward functions [57–63] and value

functions [45, 64, 65]. Building on these works, we also train

a language-conditioned distributional value function, which al-

lows us to estimate state-action advantages for our advantage-

conditioned VLA training framework.

III. PRELIMINARIES

Reinforcement learning. We consider the standard RL

setting in which an agent, given by a policy π(at|ot),
selects actions at given an observation ot ∈ O. We

define a trajectory as τ = (o0, a0, · · · ,oT ) ∈ O ×A · · ·O.

A distribution over trajectories ρπ(τ) is induced by the

policy π(at|ot) and the stochastic dynamics p(ot+1|ot, at):

ρπ(τ) = p(o0)
∏T−1

t=0 π(at|ot)p(ot+1|ot, at).
1 The reward

function is given by r(ot, at), and we abbreviate it to rt
to shorten notation, where rT is the terminal reward. We

can define the discounted cumulative reward, or return, as

R(τ) =
∑T

t=0 rt (we do not use a discount factor, though one

could easily be added). The goal of RL is to maximize the

cumulative reward (or return), learning a policy that maximizes

J (π) = Eτ∼ρπ
[R(τ)] = Eτ∼ρπ

[
∑T

t=0 rt]. The value function

for a policy π is then defined as V π(ot) = Eτt+1:T
[
∑T

t=t rt].
We can then calculate an advantage value for an action at as

Aπ(ot, at) = Eρπ(τ)[
∑t+N−1

t′=t rt′ + V π(ot+N )] − V π(ot),
corresponding to an n-step estimate.

Regularized reinforcement learning. Instead of maximizing

J (π), it is common to use regularization in RL, optimizing

for a policy that maximizes reward while remaining close

to some reference policy πref [66–70]. This is important,

for example, when we want to train for many gradient

steps on the same data, in which case πref typically cor-

responds to the behavior policy that collected the training

data. This can be formalized via the objective J (π, πref) =
Eτ∼ρπθ

[
∑T

t=0 γ
trt] − βEo∼ρπθ

[D(π(·|o)∥πref(·|o))], where

D denotes some divergence metric. For the case where

D is the KL divergence, we have the well-known result

that π̂(a|o) ∝ πref(a|o) exp(A
πref(o, a)/β) is the solution to

maxπ J(π, πref), with Lagrange multiplier β [67–70]. Our

advantage-conditioned policy extraction method is based on

a closely related but less well-known result: if we de-

fine the policy π̂(a|o) ∝ πref(a|o)p(I|A
πref(o, a))β , where

p(I|Aπref(o, a)) = g(Aπref(o, a))/
∫

g(Aπref(o, a′))da′ is the

probability of any action a improving over πref as measured

by a monotonically increasing function g, then π̂ is guaranteed

to improve over πref, i.e., J (π̂) ≥ J (πref) [4, 71]. We will use

this property in deriving our policy extraction method in Sec-

tion IV-B. Using this definition we can then obtain a paramet-

ric policy from the closed form definition of π̂ by solving the

following minimization problem: minθ Es∼ρπref
[KL(π̂, πθ)].

IV. RL WITH EXPERIENCE AND CORRECTIONS VIA

ADVANTAGE-CONDITIONED POLICIES (RECAP)

Our method consists of the follow steps, which can be

repeated one or more times to improve a base VLA model:

1) Data collection. We run the VLA on the task, labeling

each episode with task outcome labels (which determine

the reward), and optionally providing human interven-

tions to provide examples of corrections for mistakes in

the earlier iterations.

2) Value function training. We use all of the data collected

so far to train a large, multi-task value function, which

we refer to as V πref , that can detect failures and judge

the expected time to task completion.

3) Advantage conditioned training. To improve the VLA

policy with this value function, we include an optimality

indicator based on advantage values derived from this

1For simplicity, we assume the observation ot constitutes a valid Markovian
state. While not true in general, it is a common simplification in robotic RL.



value function in the VLA prefix. This “advantage

conditioned” recipe provides a simple and effective way

to extract a more optimal policy from our value function

with suboptimal data.

Figure 1 illustrates the overall structure of the training pro-

cess, while Figure 3 provides more detailed specifics of the

value function and policy architectures. Our pre-training phase

consists of performing steps (2) and (3) above on our entire

pre-training dataset, which consists of tens of thousands of

hours of demonstrations from numerous tasks and a variety of

different robots. Then, we perform steps (1), (2), and (3) one

or more times to further improve the VLA with autonomously

collected data. We describe the value function training and

policy training steps below, and then present our specific

instantiation of this approach for training π∗
0.6 in Section V.

A. Distributional value function training

To train a value function that can act as a reliable critic

for any task in our pre-training or post-training stages, we

represent V πref with a multi-task distributional value function

pϕ(V |ot, ℓ) ∈ ∆B [72], mapping the observations ot and

language command ℓ to a distribution over B discretized

value bins. In our implementation, this value function uses the

same architecture as the VLA policy, but with a smaller VLM

backbone. Using Rt(τ) =
∑T

t′=t rt′ to denote the empirical

return of a trajectory τ from time step t until the end, we

train pϕ(V |ot, ℓ) by first discretizing the empirical return value

Rt(τ) into B = 201 bins (using RB
t to denote the discretized

returns), and then minimizing the cross-entropy H over the

trajectories in the current dataset D:

min
ϕ

Eτ∈D

[

∑

ot∈τ

H(RB
t (τ), pϕ(V |ot, ℓ))

]

. (1)

This is a Monte Carlo estimator for the value function of

the policy represented by the dataset D (i.e., the behavior

policy πref). We can extract a continuous value function (and

thus an advantage) from the learned value distribution using

V πref(ot, ℓ) =
∑

b∈[0,B] pϕ(V = b|ot)v(b), where v(b) denotes

the value corresponding to bin b. During the pre-training phase,

the dataset D corresponds to the human demonstrations, and

the value function captures the expected return for the task

and metadata we condition on, while on subsequent iterations,

it skews toward a weighted combination of the return of the

demonstrations and the learned policy.

While this on-policy estimator is less optimal than a more

classic off-policy Q-function estimator, we found it to be

simple and highly reliable, while still allowing for substantial

improvement over imitation learning. Our method could be

extended to accommodate off-policy estimators in future work.

B. Policy extraction via advantage conditioning

Once we have the value function V πref , we need a way

to train an improved policy using this value function. This

is called policy extraction. An effective policy extraction

method in our setting needs to satisfy several criteria. First,

Fig. 3: Interaction between the π∗

0.6
VLA and value function during

RECAP training. The π∗

0.6
VLA uses a pre-trained VLM backbone. Training

follows the KI recipe [73], with next-token prediction on many data sources in
pre-training, and an flow-matching action-expert with stop gradient. The VLA
is conditioned on a binarized advantage indicator, obtained from a separate
value function initialized from a pre-trained but smaller VLM model.

it needs to effectively utilize diverse off-policy data, compris-

ing the initial demonstrations, the expert interventions, and

autonomous episodes from both the latest policy and older

policies. This is closely related to the challenge faced by

offline RL methods [2, 3]. Second, it needs to be scalable

and easily to apply to large VLA models, including models

that use flow matching or diffusion to generate actions. Third,

it needs to effectively utilize both good (near-optimal) and bad

(suboptimal) data, which is important if we want to improve

the policy using autonomous experience.

Among the existing methods for policy extraction, pol-

icy gradient methods (including regularized policy gradients

and reparameterized gradients) are perhaps the most widely

used [66, 74], but these methods are difficult to apply to flow

matching models, which do not readily provide a tractable

log-likelihood, making them hard to scale up to modern VLA

architectures (see comparisons in Section VI). An alternative is

to use weighted regression methods, such as AWR [68, 75, 76],

which implicitly provide for regularization to the behavior

policy and use a simple (importance-weighted) supervised

learning objective. However, these methods discard or signifi-

cantly downweight a significant portion of the data, effectively

implementing a kind of filtered imitation technique. Instead,

we use a variant of advantage conditioning [48], where the

policy is trained on all of the data with supervised learning,

but with an additional input indicating how optimal the action

is based on the advantage. This is closely related to a variety of

methods in the literature that propose to condition the policy

on some function of the resulting trajectory [47, 50].

The specific formulation in our method is most closely re-

lated to CFGRL [4]. Building on the formulation in Section III,

we can apply Bayes rule to rewrite the probability of policy



Left arm swings up and crumples the folded shirt Recovers and folds Attempts to open fridge door Tips over water filterSuccessfully opens fridge door

Successful Episode: Folding Laundry Failure Episode: Open Fridge and Take Out Water Filter

Time (s) Time (s)

Fig. 4: Visualization of the value functions. We train a multi-task value function to predict the number of steps to success, normalized by maximum task
length to (−1, 0), where 0 corresponds to successful completion. We visualize the value function output on a folding task that finished successfully (left),
and an unsuccessful example of a manipulation task from the pre-training dataset (right). The red parts highlight a drop in value, and green parts highlight
increases; images on top show the corresponding frames of the episode. The visualization shows that the VF correctly identifies mistakes in the episode, as
well as the speed of progress.

improvement as p(I|Aπref(o, a)) = πref(a|I,o)/πref(a|o). Ap-

plying this to our setting and including language conditioning,

we can obtain an alternative closed form for the improved

regularized policy described in Section III as

π̂(a, |o, ℓ) ∝ πref(a|o, ℓ)

(

πref(a|I,o, ℓ)

πref(a|o, ℓ)

)β

. (2)

For the special case β = 1, π̂(a, |o, ℓ) = πref(a|I,o, ℓ).
We can therefore represent π̂ without needing to explicitly

represent the improvement probability p(I|Aπref(o, a)), if we

train the policy so that it can represent both πref(a|o, ℓ) and

πref(a|I,o, ℓ). This principle is similar to the approach in

classifier-free guidance, where a diffusion model is trained

to model the data both with and without a conditioning

variable [4]. We assume the improvement indicator I follows

a delta distribution

p(I|Aπref(o, a, ℓ) = δ(Aπref(o, a, ℓ) > ϵℓ),

with a task dependent improvement threshold ϵℓ. This thresh-

old allows us to control the optimality indicator, and mini-

mizes the need for finding an attenuation factor β to sharpen

the improvement conditioned distribution after training.2 The

policy objective then corresponds to minimizing the following

negative log-likelihood:

min
θ

EDπref

[

− log πθ(at|ot, ℓ)− α log πθ(at|It,ot, ℓ)
]

,

where It = 1
(

Aπref(ot, at, ℓ) > ϵℓ
)

.
(3)

The advantage values Aπref(ot, at, ℓ) are obtained from the

value function in the previous section, and α is a trade-

off hyperparameter. In practice, the dataset Dπref
consists of

all of the data collected so far, including all demonstrations

and autonomous task attempts, and the reference policy πref

is therefore a mixture of human behavior and previously

2Prior work [4] instead uniformly chose ϵ = 0 and tuned β at test time, as
in classifier-free guidance (CFG). However, high CFG weights can drive the
action distribution to the corners of its support (leading to aggressive behavior)
and would not affect the autoregressive part of the model. We found it easier to
obtain good results by instead using the threshold ϵℓ to trade off regularization
and optimality.

deployed policies. To include human corrections, we found it

useful to force It = True (i.e., positive) for actions provided

as human corrections during autonomous rollouts. This choice

is reasonable if we assume that human experts always provide

good corrective actions. As we will discuss in Section V, in

practice our VLA model produces both discrete and continu-

ous outputs, with the continuous distribution represented via

flow matching. Therefore, the real training objective combines

likelihoods for the discrete values with the flow matching

objective for the continuous values.

In practice, we pre-train one model to represent

πθ(at|It,ot, ℓ) on our entire pre-training dataset, and then

perform one or more iterations of our method with on-policy

rollouts (and, optionally, expert corrective interventions) for

each task.

C. Method summary

We provide an overview of our full method in Algorithm 1.

As summarized at the beginning of this section, the method

can be fully defined through application of three subroutines:

collecting data through autonomous rollouts (with optional

corrective interventions from an expert), training a value func-

tion according to Equation 1, and training a policy according

to Equation 3. The only thing that changes between different

steps of the method is the data provided to each subroutine:

the pre-training stage uses all prior demonstration data, and

the training process for the specialists for each skill ℓ(i)

uses additional autonomous data. In practice, the specialists

are fine-tuned from the pre-trained model, while the final

generalist is trained from scratch. Additional details on the

method are provided in Appendix F.

V. IMPLEMENTATION, MODEL, AND SYSTEM DETAILS

We instantiate RECAP with a VLA that we call π∗
0.6. π∗

0.6

is based on the π0.6 VLA, which is an evolution of the π0.5

VLA [5] with a few improvements that we detail in the ac-

companying model card [6]. π∗
0.6 additionally adds the ability

condition on the binarized advantage indicator It, making it

suitable for RL training with RECAP. The model architecture

is illustrated in Figure 3. We train a value function alongside



Algorithm 1 RL with Experience and Corrections via

Advantage-conditioned Policies (RECAP)

Require: multi-task demonstration dataset Ddemo

1: Train Vpre on Ddemo using Eq. 1

2: Train πpre on Ddemo using Eq. 3 and Vpre

3: Initialize Dℓ with demonstrations for ℓ
4: Train V 0

ℓ from Vpre on Dℓ using Eq. 1

5: Train π0
ℓ from πpre on Dℓ using Eq. 3 and V 0

ℓ

6: for k = 1 to K do

7: Collect data with πk−1
ℓ , add it to Dℓ

8: Train V k
ℓ from Vpre on Dℓ using Eq. 1

9: Train πk
ℓ from πpre on Dℓ using Eq. 3 and V k

ℓ

10: end for

the VLA, following the method described in Section IV-A.

This value function is also initialized from a VLM. Training

this value function and VLA with RECAP results in our final

model, which we call π∗
0.6. In this section, we first elaborate

on the design of our model and how it can be extended to use

advantage values from the value function, then describe the

reward function and value function, and then elaborate on the

training and data collection process in our implementation.

A. The π0.6 model

The π0.6 model [6] is derived from the π0.5 model, which

can flexibly represent chunked action distributions via flow

matching and produce intermediate text for high-level policy

reasoning. It uses the Knowledge Insulation (KI) training

procedure [73], which trains the entire model end-to-end on

continuous actions and discretized tokens (including actions

discretized via FAST [77]), while using a stop gradient to

prevent the flow-matching action expert from impacting the

rest of the model. Pre-training uses both robot data and vision-

language co-training data from the web.

π0.6 improves on π0.5 in several ways: (i) The pre-training

dataset is augmented with additional data from multiple robot

platforms. (ii) The base VLM is Gemma 3 [78] 4B model. (iii)

The size of the action expert is increased to 860M parameters.

The model can be written as πθ(at:t+H , ℓ̂|ot, ℓ), where

ot = [X1
t , ...,X

n
t ,qt] contains camera images X, the robot’s

configuration q, and ℓ = ℓt+s is the language input consisting

of the overall task prompt ℓt (e.g., “make me an espresso”),

as well as additional language inputs s providing metadata

that further modulates how the task is performed. The model

produces action chunks at:t+H , which consists of joint angles

and gripper commands at 50 Hz, using a separate “action

expert” — a dedicated set of weights (860M parameters)

that are trained with flow matching specifically for action

generation, but can attend to the activations in the rest of the

model. The model also produces tokenized discrete outputs ℓ̂,
which includes a textual representation of the next predicted

sub-task (such as “pick up the coffee cup”) used for high-

level decision-making. Since the actions are generated after ℓ̂,
action generation is effectively conditioned on this predicted

sub-task, providing high-level guidance. At inference time, the

sub-task prediction runs at a lower frequency than action gen-

eration. During training, the model also predicts a tokenized

representation of the action chunk at:t+H , using the FAST

tokenizer [77], as part of the KI recipe [73]. We denote these

discretized actions aℓt:t+H . The action expert does not receive

these as input, such that discrete and continuous actions are

predicted independently. This results in the final training log-

likelihood log πθ(at:t+H , aℓt:t+H , ℓ̂|ot, ℓ). Since we predict ℓ̂
first, we can factorize this log-likelihood according to:

log πθ

(

at:t+H , aℓt:t+H , ℓ̂|ot, ℓ
)

= log πθ

(

ℓ̂|ot, ℓ
)

+ log πθ

(

aℓt:t+H |ot, ℓ, ℓ̂
)

+ log πθ

(

at:t+H |ot, ℓ, ℓ̂
)

.

B. From π0.6 to π∗
0.6 with advantage conditioning

To incorporate information about the advantage into the

policy, we expand the model inputs to contain an additional

improvement indicator as an additional text input, inputting

“Advantage: positive” when It = True, and “Advantage:

negative” otherwise. The VLA model is otherwise the same

as described in Section V-A. The advantage indicator appears

in the training sequence after ℓ̂ but before the (discretized and

continuous) actions, such that only the action log-likelihoods

are affected. The continuous part of the log-likelihood cannot

be evaluated exactly, and instead is trained via the flow match-

ing loss [79]. It is possible to draw a close parallel between

flow matching and diffusion (under some assumptions), and

the latter in turn can be interpreted as a lower bound on the

log-likelihood [80], so we can roughly motivate the sum of the

log-likelihood of the discrete actions and the flow matching

loss on the continuous actions as a lower bound on the overall

action likelihood:

log πθ(at:t+H , aℓt:t+H |It,ot, ℓ, ℓ̂) ≥

Eη,ω

[

log pθ(a
ℓ
t:t+H |It,ot, ℓ, ℓ̂)−

αη

∥

∥

∥
ω − at:t+H − fθ(a

η,ω
t:t+H , It,ot, ℓ, ℓ̂)

∥

∥

∥

2 ]
, (4)

with a
η,ω
t:t+H = ηat:t+H + (1 − η)ω, ω ∼ N (0, I) denoting

the noised action, where η ∈ [0, 1] is the flow matching time

index and fθ denotes the continuous outputs of the diffusion

expert. αη is a loss weighting term (which can optionally

be noise dependent). Full details for the loss are provided in

Appendix C.

During training, we randomly omit the indicator It instead

of tuning the loss multiplier α to allow us to either directly

sample from the policy with It = True (which corresponds to

setting β = 1 in Equation (2)), or to use both a conditional

and unconditional model to implement classifier-free guidance

(CFG), which enables inference with β > 1. See Appendix E

for details.

C. Reward definition and value function training

Since our aim is to develop a general and broadly applicable

method for training VLAs from experience, we use a general

sparse reward definition that can be applied to essentially any

task. For each episode, we obtain a label indicating whether

that episode was successful. We derive the reward from



this episode-level success label such that the value function

corresponds to the (negative) number of steps until successful

completion of the episode. This is equivalent to the following

reward function, where T corresponds to the last step in the

episode, and Cfail is a large constant that is chosen so as to

ensure that failed episodes have low values:

rt =











0 if t = T and success

−Cfail if t = T and failure

−1 otherwise.

(5)

With this reward function, we train the value function to

predict the (negative of the) number of remaining steps until

success for successful episodes, and a large negative value for

failed episodes. In practice, we normalize the values predicted

to be between (−1, 0). Since we train on diverse tasks that

have very different typical lengths, we normalize the values

per task based on the maximum episode length of the task.

The value function takes as input the same language inputs

as the π∗
0.6 VLA, and uses the same architecture design, with a

smaller 670M parameter VLM backbone that is also initialized

from Gemma 3 (see Figure 3). To prevent overfitting, we also

co-train the value function on a small mixture of multi-modal

web data. Figure 4 show visualizations of the value function

on some examples of successful and failure episodes, with

additional visualizations in Figure 13 in Appendix B.

D. Pre-training, data collection, and learning from experience

The data mixture used in the pre-training phase of our

model largely follows the recipe used by π0.5 [5], with vision-

language data from the web, prediction of subtasks ℓ̂, and

prediction of low-level actions on a variety of tasks from

many different robots. We note that, after pre-training, π∗
0.6

can perform many more tasks than the ones used in evaluation

in Section VI. During pre-training, we first train the value

function on the same dataset, predicting (the negative of) the

number of steps to successful completion of each task. Then

we estimate the per-task improvement threshold, ϵℓ, used in

determining the advantage-based improvement indicator It.
We set ϵℓ to the 30% percentile of values predicted by the

value function for the task ℓ. We then run the value function

on-the-fly during VLA training to estimate Aπref(ot, at, ℓ) for

each example, and then use it to compute It based on ϵℓ. It
is included as an input to π∗

0.6 as described in Section V-A.

As we use a relatively small VLM backbone (670M) for

the value function, on-the-fly inference of the value function

incurs minimal additional cost during VLA training.

After pre-training we start a policy improvement loop for

the target task. We first finetune π∗
0.6 with demonstration data

Dℓ for the target task ℓ. We fix the indicator It to True in this

stage, which we found to lead to slightly better results, such

that this stage corresponds to supervised finetuning (SFT).

This results in the initial policy π0
ℓ , which is then used

to collect additional data that is added to Dℓ. While some

of the episodes are collected fully autonomously, some are

monitored by an expert teleoperator who can intervene to

Fig. 5: The robot setup used in our experiments. π∗

0.6
is trained on data

from many different robots in pre-training. For the iterative improvement
experiments, we use a static bimanual system with two 6 DoF arms with
parallel jaw grippers. The arms are controlled at 50 Hz with joint positions.
Observations consist of joint and gripper positions, as well as images from
three cameras: a base camera mounted between the arms, and a wrist-mounted
camera on each arm. The setup can be mounted flexibly, e.g. on a table.

provide corrections. These corrections can show the policy

how to avoid catastrophic failures or how to recover from

mistakes. Note, however, that the corrections alone are unlikely

to fix all issues: intervening during autonomous execution is

a disruptive event, and even expert human operators cannot

guarantee a consistent quality of interventions nor improve

subtle aspects of the behavior, such as overall speed. Thus,

the corrections serve more to fix large mistakes and overcome

challenges with exploration, and do not by themselves provide

for optimal supervision, in contrast to theory [7]. Recall from

Section IV-B that we force It = True for all corrections,

but otherwise the entire episode (both the autonomous parts

and the corrections) are optionally added to the dataset Dℓ

regardless of whether or not a correction was provided.

After data collection, we finetune the value function on

all of the data collected for the task so far, and then use it

to finetune the policy with updated indicators It, using the

same procedure as in pre-training. Both the value function and

policy are finetuned from the pre-trained checkpoint, rather

than the policy and value function from the last iteration.

We found this to be useful for avoiding drift over multiple

iterations, though it may be possible to also obtain good results

by consistently finetuning from the last model.

We can repeat this process for several iterations as needed,

though in practice we found that even one iteration often leads

to significantly improved results.

VI. EXPERIMENTAL EVALUATION

In our experimental evaluation, we use RECAP to train the

π0.6 model on a set of realistic tasks: making espresso drinks,

folding diverse laundry, and assembling boxes. Each task re-

quires multiple steps, ranging from 5 to 15 minutes in duration,

complex manipulation behaviors (constrained forceful manipu-

lation, pouring liquids, manipulating cloth and cardboard, etc.),

and fast execution to provide for high throughput. We illustrate

the robotic platform used in our experiments in Figure 5. We



Fig. 6: Illustrations of the tasks used in our experiments. Tasks include three different laundry variants, assembling boxes, and making coffee drinks with
an espresso machine.

give details on the tasks and baselines below, followed by

quantitative experiments.

A. Evaluation Tasks

Our quantitative evaluations and comparisons use three

broad task categories each with individual task variants: laun-

dry folding, coffee making, and box assembly. We summarize

the tasks below, with illustrations in Figure 6:

Laundry (t-shirts and shorts). This is the standard laundry

folding task in the π0 paper [81]. This task entails retrieving

either a T-shirt or shorts from a basket with variable initial

conditions, flattening, folding. Success requires one clothing

item to be folded and stacked in the top right corner of the

table within 200 seconds.

Laundry (diverse items). The diverse laundry task requires

folding a much larger variety of items, considering 11 item

types, including towels, button-up shirts, sweaters, jeans, T-

shirts, shorts, polos, skirts, long sleeve shirts, socks, and

underwear. To obtain a low-variance metric in our experiments,

we measure performance on one of the most challenging

items – the button-up shirt. However, the policy is trained

on all items, and the accompanying videos show results for

a variety of clothing. Success is defined as having the target

item correctly folded and placed on a stack on the table within

500 seconds.

Laundry (targeted failure removal). The final version of

the laundry folding task considers a much more structured

setup for use in our ablation experiments, in which the task

involves folding a single orange T-shirt from a fixed flattened

initial condition. We place the highest emphasis on success,

with a strict success criteria that requires the shirt to be folded

correctly with the collar always facing up within 200 seconds.

We found this task to be useful for assessing whether RECAP

can remove specific undesirable behaviors via RL (in this case,

placing the collar facing down rather than up).

Cafe (double shot espresso). We evaluate our policies on

the challenging long-horizon task of making coffee with a

commercial espresso machine. While our cafe policy can make

many drinks (lattes, iced Americanos, espresso, etc), and even

clean the espresso machine with a towel, for the purposes of

our quantitative experiments we focus on the double espresso

shot task. This entails picking up the portafilter, placing it

on the grinder and grinding beans into it, tamping the ground

coffee beans, locking the portafilter into the espresso machine,

bringing over the cup, extracting the full shot of espresso, then

serving. Success is measured as completing all steps within

200 seconds without critical mistakes (such as dropping the

portafilter or spilling the coffee).

Box assembly. We evaluate our policy on the problem of

assembling packaging boxes in a real-world factory deploy-

ment scenario. Box assembly involves folding a cardboard box

starting from a flattened cardboard sheet, attaching a label onto

it and placing the box in the appropriate spot in a crate. For

the purposes of the quantitative experiments, we focus on all

portions of the task and count overall success as going from

a flattened to an assembled and stacked box in under 600

seconds.

B. Comparisons and Ablations

We compare RECAP to several baselines:

Pre-trained π0.5 [5]. This baseline does not use RL and does

not leverage RECAP.

Pre-trained π0.6 [6]. It does not include the advantage indi-

cator It, and is pre-trained with supervised learning.

RL pre-trained π∗
0.6. It is pre-trained with RL alongside

its value function, and includes an advantage indicator It as

described in Section V-D.

π∗
0.6 offline RL + SFT. This model is trained by finetuning the

base π∗
0.6 pre-trained checkpoint with demonstration data for

the target task. We refer to this finetuning as “SFT” because

the advantage values are fixed to True for all demonstrations.

We find that this combination of the offline RL pre-trained

π∗
0.6 model with high-quality SFT outperforms standard SFT



Fig. 7: Throughput. We show the number of successfully completed tasks per hour for laundry (simple and diverse), espresso making, and box assembly.
Error bars show standard error. This metric measures both success and speed. In all cases, RECAP applied to π∗

0.6
(Ours) leads to substantial improvements

in throughput. RECAP has the highest impact on throughput for diverse laundry and espresso tasks, more than doubling successful completions per hour.

Fig. 8: Success rates. We show the absolute success rates with standard error. Each stage of RECAP improves performance across the tasks, with the challenging
diverse laundry and espresso tasks seeing the largest gains success rate, corresponding to more than 2× reduction in failure rates. For the box assembly task
we show the success rate for the different subtasks. RECAP leads to the most consistent (and highest) success across all subtasks.

(without offline RL pre-training), and provides a good starting

point for RL with on-robot data.

π∗
0.6 (ours). This is the final model trained with RECAP on

the target task, including both autonomous rollouts and expert

corrections. By default we evaluate with β = 1. In some

experiments we also consider inference with CFG, which

corresponds to β > 1.

We also consider two alternative policy extraction methods

in the literature as comparisons for our advantage-conditioned

approach, both of which use the same on-robot data as RECAP

but a different policy learning method:

AWR. Starting from the same pre-trained model π0.6 (with-

out advantage conditioning) we fine-tune using advantage

weighted regression [68], based on advantages extracted from

our value-function.

PPO. We implement a variant of DPPO/FPO [23, 82] in which

we calculate likelihoods based on the single step diffusion ob-

jective and use an alternative definition of the PPO constraint

following SPO [83] (see Appendix D for details).

C. Quantitative results

We use two metrics in our evaluation: throughput and

success rate. Throughput measures the number of successful

task executions per hour, thus capturing both speed and

success rate into one practically relevant quantity. Success

rate measures the proportion of episodes that succeed, and

is derived from human-provided annotations. Raters are asked

to judge the episode with respect to multiple quality metrics,

and we aggregate these quality indicators into a success label.
1) How much does RECAP improve the policy?: To answer

this question, we present the main quantitative results in

Figures 7 and 8. Across all tasks, the final π∗
0.6 significantly

improves over the base (supervised) π0.6 model, the RL pre-

trained π∗
0.6 model, and the offline RL + SFT π∗

0.6 model.

Throughput more than doubles on the diverse laundry folding

and espresso tasks from including on-robot data (the improve-

ment from offline RL + SFT to the final π∗
0.6 model), and the

rate of failure reduces by about a factor of two. On the easier

laundry task (t-shirts and shorts), the success rate is already

close to the maximum after the SFT phase, but throughput still

increases by a significant margin with the final model.

On all of the tasks except diverse laundry, the success rate

of the final π∗
0.6 model is in the 90%+ range. This makes it

feasible to use in practical settings, such as making espresso

drinks at the office or assembling boxes in a factory, as

shown in the accompanying videos. For the box assembly

task, Figure 8 (right) contains a breakdown of the task success

over its four stages: picking up a box sheet, building the box,

labeling the box, and placing it at an available spot in a crate.

π∗
0.6 attains higher success rates for all of the stages compared

to the other models. The majority of failures on these stages

happen because the policy runs out of time. The accompanying

videos present time lapses where each of the tasks is run for

multiple hours.



Fig. 9: Improvement in throughput over multiple iterations. Both tasks
improve significantly in throughput as we take more iterations of RECAP,
with box assembling first dropping and then improving significantly.

Fig. 10: Improvement in success rate over multiple iterations. The laundry
task quickly reaches the maximum success rate (but continues to improve in
throughput as shown in Figure 9, while box assembly continues to improve.

2) How much does RECAP improve π∗
0.6 over multiple itera-

tions?: We next elucidate how training with RECAP improves

policies through multiple iterations of data collection and train-

ing. We study the T-shirt and shorts folding task and the box

assembly task. For the T-shirt folding task, only data collected

with autonomous evaluation (without human corrections) is

used to perform policy improvement over two iterations, in

order to evaluate how well our method can improve the policy

via RL alone. We collect 300 trajectories on four robots in each

iteration. Box assembly uses both autonomous trials and trials

with expert teleoperator interventions, with 600 autonomous

trials and 360 trials with interventions in each iteration.

We plot the throughput over iterations in Figure 9, com-

paring two iterations of RECAP, denoted by i = 1, i = 2
respectively. The final iteration, labeled (Ours), corresponds

to the overall best result for these tasks presented in the

previous section. We also compare the initial data collection

policy, which uses the offline RL pre-trained π∗
0.6 model with

SFT finetuning. For both tasks, π∗
0.6 improves over the two

iterations. In the laundry task we can see steady improvement

yielding an overall 50% improvement in throughput. For the

long-horizon box assembly task, more data is needed to yield

a significant improvement, but after the second iteration we

see a 2× improvement in throughput.

We also show the success rate over the iterations in Fig-

ure 10. For the laundry task, the first iteration already raises

the success rate to over 90%, while the second iteration mainly

Fig. 11: Comparison of different policy extraction methods. RECAP applied
to π∗

0.6
achieves by far the highest throughput for the laundry task compared

to AWR and PPO.

Fig. 12: Failure mode removal. Here we apply RECAP on a variant of
the laundry task with one item but a very strict success criteria. RECAP is
particularly effective at removing failure modes that would be considered non
successful under the strict criteria. Therefore, our method can also be used to
alter a policy’s behavior with relatively little data effectively.

improves throughput. For the box assembly task, we see clear

improvements in the success rate over both iterations. While

there are still some failures (especially when placing the box

on the stack at the end), the final policy achieves a success

rate of about 90% both for folding the box and labeling it in

the allocated time limit of 600 seconds.

3) How does the advantage-conditioned policy extraction

method in RECAP compare to other methods?: We compare

our advantage conditioned policy extraction method from

Section IV-B to other methods in the literature: AWR and

PPO. We use the T-shirts and Shorts task for this comparison.

To ensure a controlled comparison, we use the same data for

these comparisons that was used to train our final model. This

provides a slight advantage to the baselines, since they have

access to better data that was collected while running RECAP.

The results are shown in Figure 11. While both AWR and

PPO can attain reasonable results, they both fall far short of

our method, and struggle to improve over the offline RL +

SFT π∗
0.6 model. For PPO, we had to use a small trust-region

constraint (η = 0.01) to stabilize training in this off-policy

setting, and while this makes training stable, the method does

not achieve good performance. AWR can achieve a reasonable

success rate, but leads to much slower polies with lower

throughput.



4) Can RECAP significantly alter policy behavior with

relatively little data and remove a failure mode?: While the

preceding experiments have focused on holistic end-to-end

evaluations of policy performance, we can also zoom in on

a specific failure mode to examine whether RL training with

RECAP can remove a specific mistake from the policy. To

answer this question, we use a version of the laundry task with

a strict success criterion, which requires the policy to fold a

t-shirt with the collar centered and facing up. Each episode is

initialized with a specific adversarial condition in which the

shirt is placed flat on the table in such a way that the baseline

offline RL + SFT policy often fails to fold it correctly. As

shown in Figure 12, applying RECAP in this setting for two

iterations (collecting 600 trajectories in each iteration) results

in a policy that succeeds 97% of the time, and with high speed.

Thus we conclude that RECAP can be effective at removing

specific failure modes, even when learning entirely via RL

without any intervention data or additional demonstrations.

VII. DISCUSSION AND FUTURE WORK

Training policies that can achieve the same robustness,

speed, and fluency on real-world tasks as people presents a

major challenge in robotic learning. In this paper, we discussed

how learning from experience, through a combination of

DAgger-style coaching and RL, can begin to address this chal-

lenge. We describe RECAP, a method for training VLAs with

autonomous trials, reward feedback, and human interventions,

and present results for a model trained with RECAP, π∗
0.6,

on a set of realistic tasks: making espresso drinks, folding

diverse laundry, and assembling boxes. At the core of RECAP

is an RL method that is well-suited for scalable training

of VLA policies, using advantage conditioning for policy

extraction with value functions. The data for this RL method

is collected with a combination of autonomous rollouts and

human interventions, correcting mistakes with interventions

while finetuning the details of the behavior on autonomous

data. Our experiments show that RECAP can improve both the

success rate and throughput of the VLA, more than doubling

the throughput on some of the harder tasks, and decreasing

the number of failures by roughly 2×.

There are several directions for improvement with RECAP.

First, our system is not fully autonomous: it relies on human

labeling and effort for reward feedback, interventions, and

episode resets. A number of prior works have explored ways

to automate these components [84, 85], and VLAs offer

new ways to provide for more automated data collection, for

example by using high-level policies [86] to reason through

resetting the scene. Second, our system is relatively naı̈ve in

how it approaches exploration: exploration is largely greedy,

relying on stochasticity in the policy and human interventions

to explore new solutions. This is reasonable when the initial

imitation learning policy already takes reasonable actions, but

there is plenty of room for improvement with more sophis-

ticated exploration methods. Lastly, RECAP performs iterated

“offline” updates (i.e., it collects a batch of data, retrains the

model, and repeats), rather than running a fully online RL loop

where the policy and value function are updated in real time

as data is collected. We make this decision out of convenience,

but extending our approach into a fully concurrent online RL

framework is a promising direction for future work.

More broadly, training VLAs with RL is perhaps the most

direct path to get to performance levels that are adequate for

real-world use cases. RL with VLAs presents a number of

challenges, from the difficulty of large-scale RL training of

high capacity models to sample complexity, autonomy, and

delayed feedback. While existing RL frameworks designed for

smaller-scale systems or “virtual” domains such as LLMs can

provide a good starting point, more research will be needed

to make RL a practical tool for VLA training. We hope that

our work represents a meaningful step in this direction.
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[7] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A

reduction of imitation learning and structured prediction

to no-regret online learning. In AISTATS, pages 627–635,

2011. 2, 7

[8] Michael Laskey, Jonathan Lee, Roy Fox, Anca Dragan,

and Ken Goldberg. Shiv: Reducing supervisor burden

in dagger using support vectors for efficient learning

from demonstrations in high dimensional state spaces. In

Proceedings of the 2016 IEEE International Conference



on Robotics and Automation (ICRA), pages 462–469,

2016. doi: 10.1109/ICRA.2016.7487175. 2

[9] Michael Laskey, Jonathan Lee, Roy Fox, Anca D. Dra-

gan, and Ken Goldberg. Dart: Noise injection for robust

imitation learning. In Proceedings of the 34th Interna-

tional Conference on Machine Learning (ICML), vol-

ume 70 of Proceedings of Machine Learning Research,

pages 1989–1998. PMLR, 2017.

[10] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler,

Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea

Finn. Bc-z: Zero-shot task generalization with robotic

imitation learning. In Conference on Robot Learning,

pages 991–1002. PMLR, 2022. 2

[11] Zheyuan Hu, Robyn Wu, Naveen Enock, Jasmine Li,

Riya Kadakia, Zackory Erickson, and Aviral Kumar. Rac:

Robot learning for long-horizon tasks by scaling recovery

and correction. arXiv preprint, arXiv:2509.07953, 2025.

2

[12] Michael Kelly, Chelsea Sidrane, Katherine Driggs-

Campbell, and Mykel J Kochenderfer. Hg-dagger: Inter-

active imitation learning with human experts. In ICRA,

2019. 2

[13] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-end training of deep visuomotor policies.

The Journal of Machine Learning Research, 17(1):1334–

1373, 2016. 2

[14] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian

Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,

Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,

et al. QT-Opt: Scalable deep reinforcement learning

for vision-based robotic manipulation. arXiv preprint

arXiv:1806.10293, 2018.

[15] Ajay Mandlekar, Fabio Ramos, Byron Boots, Li Fei-

Fei, Animesh Garg, and Dieter Fox. Iris: Implicit

reinforcement without interaction at scale for learning

control from offline robot manipulation data. ICRA,

2020.

[16] Archit Sharma, M. Ahmed Ahmed Rehaan Ahmad,

and Chelsea Finn. Self-improving robots: End-to-end

autonomous visuomotor reinforcement learning. In

Proceedings of the 7th Conference on Robot Learning

(CoRL), volume 229, pages 3292–3308. PMLR, 2023.

[17] Russell Mendonca, Shikhar Bahl, and Deepak Pathak.

Alan: Autonomously exploring robotic agents in the

real world. In Proceedings of the 2023 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pages 3044–3050, 2023. doi: 10.1109/ICRA48891.2023.

10013321.

[18] Russell Mendonca, Emmanuel Panov, Bernadette Bucher,

Jiuguang Wang, and Deepak Pathak. Continuously

improving mobile manipulation with autonomous real-

world rl. In Proceedings of the 8th Conference on Robot

Learning (CoRL), pages 5204–5219, 2024.

[19] Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan,

Jacob Berg, Archit Sharma, Stefan Schaal, Chelsea Finn,

Abhishek Gupta, and Sergey Levine. Serl: A software

suite for sample-efficient robotic reinforcement learning,

2024.

[20] Lars Ankile, Zhenyu Jiang, Rocky Duan, Guanya Shi,

Pieter Abbeel, and Anusha Nagabandi. Residual off-

policy rl for finetuning behavior cloning policies. arXiv

preprint arXiv:2509.19301, 2025.

[21] Thomas Lampe, Abbas Abdolmaleki, Sarah Bechtle,

Sandy H. Huang, Jost Tobias Springenberg, Michael

Bloesch, Oliver Groth, Roland Hafner, Tim Hertweck,

Michael Neunert, Markus Wulfmeier, Jingwei Zhang,

Francesco Nori, Nicolas Heess, and Martin Riedmiller.

Mastering stacking of diverse shapes with large-scale

iterative reinforcement learning on real robots. In 2024

IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 7772–7779, 2024. doi: 10.1109/

ICRA57147.2024.10610297. 2

[22] Perry Dong, Suvir Mirchandani, Dorsa Sadigh, and

Chelsea Finn. What matters for batch online re-

inforcement learning in robotics? arXiv preprint,

arXiv:2505.08078, 2025. 2

[23] Allen Z. Ren, Justin Lidard, Lars Lien Ankile, Anthony

Simeonov, Pulkit Agrawal, Anirudha Majumdar, Ben-

jamin Burchfiel, Hongkai Dai, and Max Simchowitz.

Diffusion Policy Policy Optimization. In Proceedings

of the 2025 International Conference on Learning Rep-

resentations (ICLR), 2025. 9, 17

[24] Kun Lei, Huanyu Li, Dongjie Yu, Zhenyu Wei, Lingxiao

Guo, Zhennan Jiang, Ziyu Wang, Shiyu Liang, and

Huazhe Xu. Rl-100: Performant robotic manipulation

with real-world reinforcement learning. arXiv preprint,

arXiv:2510.14830, 2025. 2

[25] Dmitry Kalashnkov, Jake Varley, Yevgen Chebotar, Ben

Swanson, Rico Jonschkowski, Chelsea Finn, Sergey

Levine, and Karol Hausman. Mt-opt: Continuous multi-

task robotic reinforcement learning at scale. arXiv, 2021.

2

[26] Abhishek Gupta, Justin Yu, Tony Z. Zhao, Vikash Kumar,

Aaron Rovinsky, Kelvin Xu, Thomas Devlin, and Sergey

Levine. Reset-free reinforcement learning via multi-

task learning: Learning dexterous manipulation behaviors

without human intervention. In Proceedings of the

2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 6664–6671, 2021. 2

[27] Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao,

Coline Devin, Alex X Lee, Maria Bauza, Todor Davchev,

Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat:

A self-improving foundation agent for robotic manipula-

tion. arXiv preprint arXiv:2306.11706, 2023. 2

[28] Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko

Nakamoto, Yanlai Yang, Chelsea Finn, and Sergey

Levine. Pre-training for robots: Offline reinforcement

learning enables learning new tasks from a handful of

trials. In Proceedings of Robotics: Science and Systems

(RSS), 2023. doi: 10.15607/RSS.2023.XIX.019.

[29] Jingyun Yang, Max Sobol Mark, Brandon Vu, Archit

Sharma, Jeannette Bohg, and Chelsea Finn. Robot



fine-tuning made easy: Pre-training rewards and policies

for autonomous real-world reinforcement learning. In

Proceedings of the 2024 IEEE International Confer-

ence on Robotics and Automation (ICRA), 2024. doi:

10.1109/ICRA57147.2024.10610421. 2

[30] Shuhan Tan, Kairan Dou, Yue Zhao, and
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[70] Jan Peters, Katharina Mülling, and Yasemin Altün. Rel-

ative entropy policy search. In Proceedings of the

Twenty-Fourth AAAI Conference on Artificial Intelli-

gence, AAAI’10, page 1607–1612. AAAI Press, 2010.

3

[71] Qing Wang, Jiechao Xiong, Lei Han, peng sun, Han

Liu, and Tong Zhang. Exponentially weighted imitation

learning for batched historical data. In S. Bengio, H. Wal-

lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 31, 2018. 3

[72] Marc G Bellemare, Will Dabney, and Rémi Munos.
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B. Additional Value Function Visualization

Figure 13 shows additional visualizations of our trained

value function on five different tasks, including tasks on which

we evaluate our policies (espresso making, box assembly) and

also broader tasks (hang towel, attach hook). The parts with

the most prominent changes are highlighted: red corresponds

to where value function drops, green corresponds to where

value function increases, and yellow corresponds to oscillating

values. Images show the corresponding frames and description

of the episode.

C. Computing the log-likelihood for policy improvement

To derive the log-likelihood from Equation (4) we can first

observe that we can decompose the full model likelihood into

autoregressive and diffusion terms

πθ(at:t+H , aℓt:t+H , ℓ̂|It,ot, ℓ) =

πθ(at:t+H |It,ot, ℓ, ℓ̂)πθ(a
ℓ
t:t+H |It,ot, ℓ, ℓ̂)πθ(ℓ̂|It,ot, ℓ),

(6)

where the first term is modeled with flow matching, the second

term is the autoregressive likelihood of the discretized actions

aℓt:t+H , and the third term corresponds to the autoregressive

text likelihood. The autoregressive likelihoods can be esti-

mated in the usual way, using the cross-entropy loss evaluated

on ground truth tokens. For the continuous likelihood over

at:t+H , a closed form likelihood is not available [79]. We

can, however follow prior work [82], and consider the one-step

diffusion process as a Gaussian distribution with likelihood

logπθ(at:t+H |aη,ω1:H , It,ot, ℓ, ℓ̂) =

logN
(

ω − fθ(a
η,ω
1:H , It,ot, ℓ, ℓ̂), I

)

,
(7)

with a
η,ω
t:t+H = ηat:t+H + (1 − η)ω and ω = N (0, I). From

this we can form an evidence lower bound to the likelihood

following [80, 82] (effectively marginalizing over η and ω)

which yields

logπθ(at:t+H |It,ot, ℓ, ℓ̂) ≥

1

2
Eη,ω

[

− w(η)
∥

∥

∥
ω − a1:H − fθ(a

η,ω
1:H , It,ot, ℓ, ℓ̂)

∥

∥

∥

2 ]

+ c,

(8)

where w(η) = e−η/2 is a noise dependent weighting term,

and c is a constant independent of fθ. For the derivation,

see [80], which also derives the relationship between flow

matching and diffusion in Appendix D.3 for this choice of

weighting term. Finally putting the lower bound together with

the autoregressive likelihood for the discretized action part of

the text output ℓ̂, and subsuming the weighting terms in α,

gives

log πθ(at:t+H , aℓt:t+H |It,ot, ℓ, ℓ̂) ≥

Eη,ω

[

log pθ(a
ℓ
t:t+H |It,ot, ℓ, ℓ̂)

− αη

∥

∥

∥
ω − a1:H − fθ(a

η,ω
1:H , It,ot, ℓ, ℓ̂)

∥

∥

∥

2 ]

,

(9)

which is the bound given in the main part of the paper.



Drops portafilter multiple times Succeeds & continues

Successfully building a cardboard box

Right arm drops towel Tidy Successfully hangs towel

Tries to attach the hook but the hook flies off due to unstable hold

Fig. 13: Additional visualization of value function on five different tasks.

Red parts highlight places where value drops, green parts highlight places
where value increases, and yellow parts highlight oscillating value regions.
Images show the corresponding frames and descriptions of the episode.

D. PPO implementation

We implement a variant of PPO [66] related to DPPO and

FPO [23, 82] and use it as an additional baseline. To allow for

training both the autoregressive part of the model as well as the

diffusion based action expert in a compute effective manner

we calculate likelihoods based on the single step diffusion

objective alone.

In particular, we use a likelihood bound analogous to Eq.

(9) (previous section) but without the improvement indicator.

Decomposing into autoregressive and flow-matching terms this

can be written as

log πθ(at:t+H , aℓt:t+H |ot, ℓ, ℓ̂) ≥

Eη,ω

[

log pθ(a
ℓ
t:t+H |ot, ℓ, ℓ̂)

− αη

∥

∥

∥
ω − a1:H − fθ(a

η,ω
1:H ,ot, ℓ, ℓ̂)

∥

∥

∥

2 ]

,

(10)

which is analogous to the diffusion likelihood bound used in

FPO [82]. And we combine it with a PPO style loss separated

into diffusion and autoregressive terms. In preliminary exper-

iments we found that for our setting it was difficult to enforce

a trust region constraint on the action expert (which models

actions with an unbounded diffusion head) when using the

standard PPO clipping objective. Presumably, this is partially

due to the “offline” nature of our algorithm setting, where

we cannot afford to collect new data from real robots every

few gradient steps. To stabilize training we found using an

alternative definition of the PPO constraint following SPO [83]

to be effective. The resulting loss is given as:

LSPO+CoV LA(θ) =
{

πθ(aℓ̂ ∈ ℓ̂|ot, ℓ)

πref(aℓ̂ ∈ ℓ̂|ot, ℓ)
Aπref(ot, at, ℓ)

−
|Aπref(ot, at, ℓ)|

2ϵar

[

πθ(aℓ̂ ∈ ℓ̂|ot, ℓ)

πref(aℓ̂ ∈ ℓ̂|ot, ℓ)
− 1

]}

+α

{

πθ(at:t+H |ot, ℓ)

πref(at:t+H |ot, ℓ)
Aπref(ot, at, ℓ)

−
|Aπref(ot, at, ℓ)|

2ϵflow

[

πθ(at:t+H |ot, ℓ)

πref(at:t+H |ot, ℓ)
− 1

]}

,

(11)

where α is a trade-off parameter and ϵar, ϵflow are trust-region

parameters for autoregressive and flow-matching model parts

respectively. We use this variant to perform training on eval

data starting from the π0.6 checkpoint.

E. Using CFG for test-time policy improvement with β > 1

After training we can choose to further sharpen the policy

used for evaluation by setting β > 1 in Eq. (2). As shown in

prior work [4] we can recover this sharpened policy without

additional training since it is implicitly defined by the learned

policies πθ(at:t+H |It,ot, ℓ) and πθ(at:t+H |ot, ℓ). Specifically,

after training we can form the approximation

π̂(at:t+H |ot, ℓ) ∝ πref(at:t+H |ot, ℓ)

(

πref(at:t+H |It,ot, ℓ)

πref(at:t+H |ot, ℓ)

)β

.

(12)

One can now realize that the diffusion model effectively

learns the gradient of the likelihoods, i.e. it represents

∇a log πθ(at:t+H |It,ot, ℓ) and ∇a log πθ(at:t+H |ot, ℓ) re-

spectively. From this, following Frans et al. [4], we can see

that if we run flow-matching inference following the gradient

∇a log πθ(at:t+H |ot, ℓ)+

β(∇a log πθ(at:t+H |It,ot, ℓ)−∇a log πθ(at:t+H |ot, ℓ)),
(13)



we are effectively sampling from the desired attenuated dis-

tribution. We note that, as mentioned in the main paper, the

parameter β is loosely connected to the advantage threshold

ϵℓ that we introduce during training (in the sense that both

sharpen the distribution, one at inference and one at training

time). We find that sharpening the distribution after training

with high settings for β can lead to pushing the action distribu-

tion towards the boundaries of its learned support (which can

lead to overly aggressive motions) and thus primarily rely on ϵℓ
for obtaining a good conditioned policy directly after training

and combine it with moderate settings (e.g. β ∈ [1.5, 2.5])
where useful.

F. Additional algorithm details

We describe details for setting the task specific parameters

used in Algorithm 1.

Advantage Estimation: During post-training, we estimate

the advantage function using Aπ(ot, at) =
∑t+N−1

t′=t r′t +
V π(ot+N )− V π(ot), where ot+N is an observation sampled

from N steps ahead from the same trajectory. We use N = 50
lookahead to calculate this advantage. During pre-training, we

calculate the advantage estimate as Aπ(ot, at) =
∑T

t′=0 r
′
t −

V π(ot), setting N = T for each episode, which is a higher

variance estimate of the advantage. We use this advantage

calculation since it allows us to calculate the advantage values

on-the-fly during pre-training using a single inference call to

the value function. We find empirically that this advantage

estimate works well when the policy is trained on large

amounts of data from diverse tasks during pre-training.

Advantage conditioning dropout: During training, we

randomly drop out the conditioning on the advantage indi-

cator 30% of the time. We employ this dropout so that we

can directly sample directly from either the conditional or

unconditional policy during inference time and use CFG for

test-time policy improvement (see Section E for details); and

it effectively replaces the loss multiplier α.

Advantage threshold: The per task advantage threshold ϵℓ
is set as follows. During pre-training we select the threshold

for each task such that approximately 30% of the demonstra-

tion data has positive advantage (as calculatedd on a random

sample of 10k datapoints). During fine-tuning we generally set

the threshold such that approximately 40% of the evaluation

rollouts in each iteration have positive advantage. For the T-

shirt and shorts laundry folding task (in which training on

high-quality demonstration data yields slow policies but with

high success rate) we increase the threshold such that only

approximately 10% of the data has positive advantage.

Dataset composition: We use the dataset aggregation strat-

egy described in Algorithm 1 for all tasks. However each

of our task has distinct nature: the episode lengths vary, the

performances of Iteration 0 model on each task are differ-

ent, and one task (Assemble Box) is performed offsite in a

deployment scenario. Therefore, we have different amount of

demonstration data to begin with and collect different amounts

of experience data for iterative improvement. For laundry (T-

shirt and shorts), we use autonomous evaluation data only

without expert corrections. As we push model performance to

closely resemble the expert data collector in terms of speed,

it becomes hard to provide corrections. For this task, We

collect 300 episodes across 4 robot stations for reporting eval

performance. For the diverse laundry folding task we collect

450 evaluation episodes and 287 correction episodes. For the

failure mode removal ablation we collect both autonomous and

policy correction data. In total we collect ∼ 1000 autonomous

and 280 + 378 correction episodes spread over 3 robots. For

box assembly we collect data in the deployment scenario

directly, collecting 600 demonstrations and 360 correction

episodes in each iteration, using 3 robots in total. For cafe we

perform a single iteration and collect 429 correction episodes

as well as 414 autonomous episodes.
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